Mechanosensitive physiology of chlamydomonas reinhardtii under direct membrane distortion

نویسندگان

  • Seul Ki Min
  • Gwang Heum Yoon
  • Jung Hyun Joo
  • Sang Jun Sim
  • Hwa Sung Shin
چکیده

Cellular membrane distortion invokes variations in cellular physiology. However, lack of an appropriate system to control the stress and facilitate molecular analyses has hampered progress of relevant studies. In this study, a microfluidic system that finely manipulates membrane distortion of Chlamydomonas reinhardtii (C. reinhardtii) was developed. The device facilitated a first-time demonstration that directs membrane distortion invokes variations in deflagellation, cell cycle, and lipid metabolism. C. reinhardtii showed a prolonged G1 phase with an extended total cell cycle time, and upregulated Mat3 regulated a cell size and cell cycle. Additionally, increased TAG compensated for the loss of cell mass. Overall, this study suggest that cell biology that requires direct membrane distortion can be realized using this system, and the implication of cell cycle with Mat3 expression of C. reinhardtii was first demonstrated. Finally, membrane distortion can be an attractive inducer for biodiesel production since it is reliable and robust.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoconversion of Photochlorophyllide in the y-1 Mutant of Chlamydomonas reinhardtii.

Dark-grown y-1 mutant cells of Chlamydomonas reinhardtii accumulate protochlorophyllide (Pchlide) in both 635 nanometers (P635) and 650 nanometers (P650) forms. Plastids in these cells lack the normal thylakoid membrane structure except some remnants of membrane vesicles. Using difference spectrophotometry, P635 is shown to be photoconverted to chlorophyllide at 672 nanometers (C672) and P650 i...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii.

Autophagy is a catabolic membrane-trafficking process whereby cells recycle cytosolic proteins and organelles under stress conditions or during development. This degradative process is mediated by autophagy-related (ATG) proteins that have been described in yeast, animals, and more recently in plants. In this study, we report the molecular characterization of autophagy in the unicellular green ...

متن کامل

The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii.

In the unicellular green algae Chlamydomonas reinhardtii, high-affinity uptake of iron (Fe) requires an Fe(3+)-chelate reductase and an Fe transporter. Neither of these proteins nor their corresponding genes have been isolated. We previously identified, by analysis of differentially expressed plasma membrane proteins, an approximately 150-kD protein whose synthesis was induced under conditions ...

متن کامل

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014